
Variable Scaling and Hypothesis Testing in the Gravity Model∗

Anton Yang†

Yale University

Russell Hillberry‡

Purdue University

September 1, 2023

Abstract

Statistical inference around hypothesis tests in Poisson Pseudo Maximum Likeli-

hood (PPML) models is sensitive to data scaling choices. We show this analytically

and demonstrate it using a simple application of the gravity model of trade. The scale

of the data on the independent variable affects the scale of both the Likelihood statistic

and the Likelihood Ratio test statistic. Lagrange Multiplier tests are similarly sensitive

to data scaling choices. When considering Wald tests, we find some nuance. Data scal-

ing affects the Wald statistic when it depends upon the asymptotic variance-covariance

matrix, but not when the variance-covariance matrix depends upon residuals from ro-

bust estimation. Testing of joint hypotheses in PPML gravity models should therefore

rely on Wald tests constructed from robust standard errors.
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1 Introduction

The enormous literature on the gravity model of trade has adopted the Poisson Pseudo Maxi-

mum Likelihood (PPML) function as its preferred econometric objective.1 The primary focus

of this literature has been estimation of model parameters, parameters that map cleanly onto

prominent theories of bilateral trade that feature constant elasticity of substitution (CES)

demands for national factor bundles.2 The canonical CES theories assume homotheticity, ad

valorem trade costs, constant trade elasticities, and, typically, that all trade is in final goods.

Given the recent emphasis on moving from gravity model estimation to welfare analysis, it

is important that the canonical theories be subject to further testing against richer theories

of bilateral trade.3

A nascent literature has shown that the canonical CES theories are overly restrictive.

One approach to testing theoretical restrictions uses the PPML objective function in a two-

step estimation procedure: first estimate a PPML gravity specification with fixed effects, and

then use the fixed effects to construct variables for subsequent hypothesis testing via t-tests

in a second PPML specification.4 While this approach is persuasive, it requires adjustments

for simultaneity, and only allows testing for the significance of variables individually rather

than collectively. It would be preferable to be able to estimate simultaneously, and to jointly

test restrictions on sets of variables relevant to a theoretical restriction.

A promising alternative approach to testing theoretical restrictions employs a Mathe-

1Santos Silva and Tenreyro (2006a) introduce the PPML framework to the gravity-model-of-trade liter-
ature. In August of 2023, the article had been cited nearly 8,000 times in Google Scholar.

2The most prominent of these theories are Anderson (1979), Eaton and Kortum (2002), and Melitz (2003)
(as interpreted by Chaney (2008)). Arkolakis, Costinot and Rodŕıguez-Clare (2012) show that all of these
theories map to a CES factor demand model. Fally (2015) and Anderson and Yotov (2012) demonstrate the
ease of mapping between the PPML estimation model (with origin and destination fixed effects) and the
standard CES gravity theory.

3A related reason for additional empirical scrutiny is that the canonical theories were devised ex post
to fit a robust empirical relationship that was known ex ante. The empirical success of the model is not
therefore validation of the theory, though it is sometimes interpreted that way.

4Caron, Fally and Markusen (2014) transform first stage estimates from a PPML specification to estimate
income elasticities of demand at the sector level. Most income elasticities are different than one. Chen and
Novy (2022) use a PPML framework to first estimate fixed effects, and then construct interactions of trade
frictions with fitted trade shares to demonstrate the presence of heterogeneity in trade cost elasticities, as
their translog demand function predicts.
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matical Program with Equilibrium Constraints (MPEC) to conduct structural estimation

of gravity models of trade.5 In this context an MPEC maximizes an econometric objective

function (e.g. a likelihood function) subject to a set of constraints that fully define the pro-

posed theory of bilateral trade. Because the MPEC separates the econometric objective from

the particular economic theory under investigation, it allows (in principle) direct testing of

parameter restrictions in richer theories that nest the CES gravity model. One question that

has arisen in this context is whether the properties of the PPML objective function allow it

to be used for evaluating model restrictions jointly.6

In this paper we show that the results of hypothesis tests in the PPML specification

are, in many cases, sensitive to data scaling choices. This is unfortunate because empirical

estimation of the gravity model of trade involves choices of data scale.7 We show that data

scaling - in particular scaling of the data on the independent variable (e.g. bilateral trade)

- affects hypothesis testing of PPML models in non-trivial ways. The values of both the

likelihood function and the associated LR test statistic depend on data scale. Inferences

drawn from Lagrange Multiplier tests and the standard Wald test are also sensitive to data

scaling.

We find only one approach that is suitable for tests of joint hypotheses. We show that

Wald test statistics calculated from an information matrix defined by robust (Huber-White)

standard errors are independent of the scale of the y-variable employed in PPML estimation.

The test is also robust to scaling of the x-variables. We conclude that Wald tests that rely

5Su and Judd (2012) describe the benefits of MPEC for structural estimation. Balistreri and Hillberry
(2007) first use an MPEC to estimate a structural gravity model. Balistreri, Hillberry and Rutherford (2011)
estimate the structural parameters of the Melitz (2003) model for the manufacturing sector. Tan (2013) uses
a similar approach to estimate the parameters of gravity model with a flexible translog demand system, and
conducts counterfactual analysis with the richer parameter set. These papers focus on parameter estimation
rather than testing of restrictions.

6Yang (2021) develops and estimates a generalized Armington model of trade that allows for flexibility
in trade and income elasticities, and shows that his general model nests several more restrictive models,
including the canonical CES model as well as richer theories of gravity. The econometric objective in his
MPEC is PPML.

7For example, in Santos Silva and Tenreyro (2006a) the dependent variable (the value of bilateral trade)
is expressed in units of one thousand U.S. dollars. Another prominent paper, Anderson and van Wincoop
(2003), scales both trade flows and Gross Domestic Products so they are expressed in millions of dollars.
The log distance variable in the gravity model also involves a choice of scale (miles, kilometers, etc.).
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on test statistics calculated with robust standard errors are thus appropriate for the setting

we imagine.

In order to illustrate our key insights, we conduct an application in which we test the

hypothesis that colonial links between two trading partners affect trade flows in a PPML

specification that also includes a variable indicating that the two countries share a common

language. Consistent with our mathematical derivations, both Likelihood statistics and

Likelihood Ratio tests of excluding the colonial links variable are sensitive to data scaling

choices. As our theory shows, a Wald test that depends on asymptotic standard errors is

sensitive to scaling, while a Wald test that relies on robust standard errors is not. Our

application tests a restriction on single variable, in order to allow transparent comparisons

with t-tests. We show analytically that our results extend to tests of joint restrictions of

multiple parameters, and to structural models estimated with an MPEC.

The remainder of the paper is organized as follows. Section 2 briefly reviews the PPML

estimator in the context of the gravity model of trade. In Section 3 we demonstrate the main

issue by showing - analytically and empirically - that scaling affects statistical inference in

LR tests. In Section 4 we show that the effects of scaling on Wald tests depend on the form of

the error term used to construct the information matrix, and validate these results with our

empirical example. Section 5 shows that Lagrange Multiplier tests are also sensitive to data

scaling. Section 6 considers other topics, including the scaling of the model’s independent

variables and the extension of the main results to an MPEC setting. Section 7 concludes.
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2 The PPML Estimator

Consider the estimation specification suggested by Santos Silva and Tenreyro (2006a):

yi = exp(x′
iβ) + ϵi, (1)

where yi, i = 1, .., n, can be observed from data, xi is a vector of exogenous variables, β a vec-

tor of associated parameters, and ϵi an error term with E[ϵi|xi] = 0. Following Gourieroux,

Monfort and Trognon (1984a,b), choose β to maximize the log-likelihood function:

L(β) = K −
n∑
i

exp(x′
iβ) +

n∑
i

yi(x
′
iβ), (2)

where K is a constant term.8

Our analytic exercises will use this general framework, but to make our example concrete

consider a simple PPML gravity model of trade:

yij = exp[β0 + β1 log(xi) + β2 log(xj) + β3zij] + ϵij, (3)

where yij are observed bilateral trade flows between locations i and j, the gross domestic

product of exporting and importing locations are denoted by xi and xj, respectively, and

zij is a variable that applies bilaterally to locations i and j. The log transformation on the

right-hand side of (3) is standard in the gravity literature.

8In the Poisson likelihood function used to estimate count models, K takes an explicit form K =
∑n

i (yi!).
In the PPML model, the y-variable does not appear in the likelihood function, a central reason for the issues
we confront here.
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3 Scale and Testing using Likelihood Ratios

Consider two models: a ‘small’ parsimonious model, and a ‘large’ model with more param-

eters. We wish to consider a hypothesis test of the form:

Hypothesis H0: the ‘small’ model is more consistent with the data.

Hypothesis Ha: the ‘large’ model is more consistent with the data.

The test statistic for an LR test of H0 appears as:

Λ = −2[LH0(β)− LHa(β′)], (4)

where β and β′ are the parameter vectors associated with the ‘small’ and ’large’ models,

respectively. Asymptotically, Λ is distributed χ2 with k degrees of freedom, where k is the

reduction in the number of parameters when moving from the ‘large’ to the ‘small’ model.

Given a critical value c for this distribution, the null hypothesis will be rejected if Λ > c.9

3.1 Implications of Scaling for Likelihood

Let the log-likelihood function for the ‘small’ model take the form:

LH0(β) = −
n∑
i

exp[β0 + β1 log(xi)] +
n∑
i

yi[β0 + β1 log(xi)], (5)

where β0 is a constant term, β1 is the coefficient on log xi.
10

In order to show that the scaling of yi affects Λ, we introduce an arbitrary scalar S ̸= 1

that we apply to yi. The associated log-likelihood function is:

L̃H0(β̃) = −
n∑
i

exp[β̃0 + β̃1 log(xi)] +
n∑
i

Syi[β̃0 + β̃1 log(xi)] (6)

where L̃H0(β̃) is the log-likelihood involved with the scaling factor S, and β̃0 and β̃1 are

9See Gouriéroux, Holly and Monfort (1982).
10We follow the standard PPML-gravity literature and suppress the parameterK. Equation (4) differences

K from Λ anyway.
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the model’s parameters given the scaling. Taking the first-order conditions with respect to

β terms in Equations (5) and (6) and solving the associated system of equations reveals

relationships between the parameters before and after the scaling: β0 = β̃0 − log(S) and

β1 = β̃1. Intuitively, scaling affects the size of the constant term, but other coefficients in

the model are unaffected. However, the log-likelihoods before and after the scaling of yi are

not equivalent:

L̃H0(β̃) =−
n∑
i

exp[β̃0 + β̃1 log(xi)] + S

n∑
i

yi[β̃0 + β̃1 log(xi)]

=− S

n∑
i

exp[β0 + β1 log(xi)] + S
n∑
i

yi[β0 + logS + β1 log(xi)]

̸=−
n∑
i

exp[β0 + β1 log(xi)] +
n∑
i

yi[β0 + β1 log(xi)]

=LH0(β).

(7)

The relationship only holds with equality when S = 1.

3.2 Implications of Scaling for Likelihood Ratio Tests

Now shift to the large model by introducing another variable, zi. The associated log-

likelihood function is:

LHa(β′) = −
n∑
i

exp[β′
0 + β′

1 log(xi) + β′
2 log zi] +

n∑
i

yi[β
′
0 + β′

1 log(xi) + β′
2 log zi], (8)

with ′ indicating parameters of the larger model. The log-likelihood of the large model with

scaled data appears as:

L̃Ha(β̃′) = −
n∑
i

exp[β̃′
0 + β̃′

1 log(xi) + β̃′
2 log(zi)] + S

n∑
i

yi[β̃′
0 + β̃′

1 log(xi) + β̃′
2 log(zi)]. (9)
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It can be shown that the parameters in the scaled and unscaled large models have the

relationships: β′
0 = β̃′

0 − log(S), β′
1 = β̃′

1 and β′
2 = β̃′

2.

The difference between the log-likelihoods using the scaled data is given by:

L̃H0(β̃)− L̃Ha(β̃′) =−
n∑
i

exp[β̃0 + β̃1 log(xi)] + S

n∑
i

yi[β̃0 + β̃1 log(xi)]

+
n∑
i

exp[β̃′
0 + β̃′

1 log(xi) + β̃′
2 log(zi)]− S

n∑
i

yi[β̃′
0 + β̃′

1 log(xi) + β̃′
2 log(zi)].

(10)

Dividing both sides by S in equation (10) and substituting the derived parametric relation-

ships into the test statistics produces:

Λ̃(β̃)

S
=

−2
[
L̃H0(β̃)− L̃Ha(β̃′)

]
S

=− 2

{
− 1

S

n∑
i

exp[β0 + log(S) + β1 log(xi)]

+
n∑
i

yi[β0 + log(S) + β1 log(xi)]

+
1

S

n∑
i

exp[β′
0 + log(S) + β′

1 log(xi) + β′
2 log(zi)]

−
n∑
i

yi[β
′
0 + logS + β′

1 log(xi) + β′
2 log(zi)]

}
.

(11)

The right-hand side of equation (11) is equal to the test statistic with unscaled data: Λ(β) =

−2
[
LH0(β) − LHa(β′)

]
. The lesson is that Λ(β) varies inversely with the scale applied to

the y variable. The critical value of the χ2 distribution is unchanged, but the test statistic

changes with S, polluting statistical inference.
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3.3 Empirical Example

To illustrate the relevance of this issue, we offer a simple example using the data and empir-

ical specification proposed by Santos Silva and Tenreyro (2006a). Those authors estimate a

gravity model with 14 independent variables and an unreported constant term. Their speci-

fication contains two related variables: an indicator that the origin and destination countries

share a colonial tie, and another indicator that the two countries share a common language.

Since common historical forces often drove these two outcomes, it can be difficult for an

applied researcher to know whether or not both variables should be included in a gravity

regression. In Santos Silva and Tenreyro (2006a) the coefficient on the common language

dummy is statistically significant, while the coefficient on the colonial tie variable is not. Our

empirical example is a test of the hypothesis that a model without the colonial tie variable

is equivalent to a model that includes it, thereby justifying estimation of the smaller model

(without the colonial tie dummy).

Table 1: PPML estimates with different scalings of trade flows

S=1000 S=1* S=0.001 S=1e-6
Model w/ Colony w/o Colony w/ Colony w/o Colony w/ Colony w/o Colony w/ Colony w/o Colony
Shipment in USD USD 1,000 USD 1,000 USD mil. USD mil. USD bil.USD bil.USD
Comlang 0.75** 0.76** 0.75** 0.76** 0.75** 0.76** 0.75** 0.76**

(0.13) (0.08) (0.13) (0.08) (0.13) (0.08) (0.13) (0.08)
Colony 0.03 - 0.03 - 0.03 - 0.03 -

(0.15) - (0.15) - (0.15) - (0.15) -
La(β′) -8.70197e11 -870246443 -888289.69 -2630.97
L0(β) -8.7025e11 -870297478.5 -888340.72 -2631.02
Λ 1.02e8** 102071** 102.07** 0.10207
P > χ2 0.00 0.00 0.00 0.75

Results from replications of the full specification in Santos Silva and Tenreryo (2006a) with different scalings

of the trade variable; *indicates the scale used Santos Silva and Tenreyro; **indicates statistical significance

at the 5% level; standard errors in parentheses.

We download the data from Santos Silva and Tenreyro (2006b). We consider different

scalings of the bilateral trade data, premultiplying it with different values of a scalar S.

We estimate the model in Stata using the ppmlhdfe command.11 Since our focus is on

11Correia, Guimarães and Zylkin (2020) develop this command to estimate the PPML model in the
presence of high dimensional fixed effects. While our model does not contain high dimensional fixed effects,
the ppmlhdfe command is still suitable. A key advantage of the package for our purposes is that it calculates
and reports a likelihood statistic.
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the two dummy variables and the likelihood statistics, we report only statistics related to

these outcomes in Table 1. For each scaling of the data, we report results for PPML models

estimated with and without the colonial tie variable. We arrange the results in increasing size

of S, which corresponds to different choices of units for the value of bilateral trade. Columns

1-2 use one dollar units. Columns 3-4 measure trade in thousands of dollars. Columns 5-6

use million dollar units; columns 7-8 use one billion dollar units.

Column 3 is a replication of Santos Silva and Tenreyro (2006a), with almost exactly

identical results. The coefficient on the common colony variable (0.03) is economically small

and statistically insignificant, suggesting that perhaps it can be excluded from the model.

Column 4 reports the common language coefficient in the model that excludes the colonial

tie variable. Log-likelihoods for the two models are reported below the coefficient estimates,

as is the test statistic Λ. The value of Λ for Santos Silva and Tenreyro’s scaling of the data is

102,071, providing a clear rejection of the model without the colonial tie. This is surprising,

as the coefficient on the Colony variable is not statistically different from zero in Column 3.

Columns 1-2 report estimates of the two models when the data are scaled in single dollar

units. The choice of smaller units scales Λ upward by a factor of 1,000, incorrectly increasing

the level of confidence in rejecting the null hypothesis. In columns 5-6, trade flows are scaled

in millions of dollars; Λ is therefore scaled downward by 1,000 relative to the base case. The

null hypothesis continues to be soundly rejected, but by a smaller margin than with the

initial scaling. In columns 7-8, we scale the data into units of $1 billion. In this case the

computed value of Λ fails to reject the hypothesis that the two models are equivalent.

Note that the parameter estimates in all specifications are indifferent to the scale of

the data. As in the mathematics above, scaling the data affects the constant term, but

is otherwise unimportant for parameter estimation. Only the values of L(β), Λ and the

associated statistical inference are affected by scaling.
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4 Wald Test

We next turn our attention to the Wald test, where we observe that the effects of scaling

depend upon the errors that are used to calculate the Fisher information matrix. We show

analytically that test statistics calculated with model-based asymptotic standard errors de-

pend on data scaling, while test statistics calculated with robust standard errors do not.12

In order to simplify the notation, in both cases our analytical exercise uses the ‘small’ model

and a restriction on β1. Results for restrictions on a specification with more parameters can

be logically extended, as can be seen in subsection 4.3.13

4.1 Non-Robust Asymptotic Standard Errors

To calculate the Wald test statistic with asymptotic standard errors we refer the reader to

the unscaled ‘small’ model in equation (5). The associated Hessian matrix H(β) is given

by:

H(β) =
∂2LH0(β)

∂β · ∂βT
= −

n∑
i=1

 exp(β0 + β1 log(xi)) log(xi) exp(β0 + β1 log(xi))

log(xi) exp(β0 + β1 log(xi)) (log(xi))
2 exp(β0 + β1 log(xi))

 .

(12)

The Fisher information matrix IF (β) is the negative of H(β). The asymptotic variance-

covariance matrix is defined as the inverse of IF (β). Wald test statistics depend on the

variance-covariance matrix. Our central result in this section is that scaling the yi data

produces an asymptotic variance-covariance matrix that is a proportional scaling of the

asymptotic variance-covariance matrix associated with the unscaled model. We demonstrate

this relationship in Theorem 1.

12The “model-based” qualifier on the asymptotic standard errors is formal language acknowledging that
the errors depend upon the model specification as well as upon the estimated parameters. In the interest of
brevity, we omit the “model-based” adjective hereafter.

13In Appendix A.2, we offer a proof for the ‘large’ model and further extend this case to an n x n matrix.
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Theorem 1 Given a twice-differentiable Poisson Pseudo-Maximum Likelihood function in

equation (5) with dependent variable yi for i = 1, . . . , n and independent variable xi ∈ Rn in

the model matrix X ∈ Rn×(p+1), and residuals ϵ = (y1−exp(x′
1β), . . . , yn−exp(x′

nβ))
⊤ ∈ Rn.

Assume that the Hessian matrix of the function with respect to model parameters B =

{β0; β1, ..., βn}T in the space Γ ⊆ Rn is invertible (nonsingular). If the dependent variable

yi for i = 1, . . . , n is scaled by a factor S ̸= 1, then the relationship between the asymp-

totic variance-covariance matrix V asym of the unscaled model and the asymptotic variance-

covariance matrix Ṽ asym of the scaled model must be V asym = SṼ asym.

Proof. The asymptotic variance-covariance matrix V asym stated in Theorem 1 is

V asym =
[
IF (β)

]−1
= [−H(β)]−1 =

{
−
[
∂2L(β)

∂β · ∂βT

]}−1

. (13)

V asym denotes the asymptotic variance-covariance matrix for the unscaled model, while

Ṽ asym represents the asymptotic variance-covariance matrix for the scaled model in equation

(6).

It is straightforward to show that:

V asym =
1

det(IF )

 ∂2L
∂β1βT

1
− ∂2L

∂β0∂β1

− ∂2L
∂β1∂β0

∂2L
∂β0βT

0


=

1

det(IF )

∑n
i=1(log(xi))

2 exp(β0 + β1 log(xi)) −
∑n

i=1 log(xi) exp(β0 + β1 log(xi))

−
∑n

i=1 log(xi) exp(β0 + β1 log(xi))
∑n

i=1 exp(β0 + β1 log(xi))



=

∑n
i=1(log(xi))

2 exp(β0 + β1 log(xi)) −
∑n

i=1 log(xi) exp(β0 + β1 log(xi))

−
∑n

i=1 log(xi) exp(β0 + β1 log(xi))
∑n

i=1 exp(β0 + β1 log(xi))


∂2L

∂β0βT
0

∂2L
∂β1βT

1
−
(

∂2L
∂β0∂β1

)2 .

(14)

Following results in Section 3.1, we have β0 = β̃0 − log(S) and β1 = β̃1. This allows us
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to show that det(ĨF ) = S2det(IF ):

det(ĨF ) =
∂2L̃

∂β̃2
0

∂2L̃

∂β̃2
1

−

(
∂2L̃

∂β̃0∂β̃1

)2

=
n∑

i=1

exp(β̃0 + β̃1 log(xi)) ·
n∑

i=1

(log(xi))
2 exp(β̃0 + β̃1 log(xi))

−
n∑

i=1

log(xi) exp(β̃0 + β̃1 log(xi)) ·
n∑

i=1

(log(xi))
2 exp(β̃0 + β̃1 log(xi))

=
n∑

i=1

exp(β0 + log(S) + β1 log(xi)) ·
n∑

i=1

(log(xi))
2 exp(β0 + log(S) + β1 log(xi))

−
n∑

i=1

log(xi) exp(β0 + log(S) + β1 log(xi)) ·
n∑

i=1

(log(xi))
2 exp(β0 + log(S) + β1 log(xi))

= S2

[
∂2L

∂β0βT
0

∂2L

∂β1βT
1

−
(

∂2L

∂β0∂β1

)2
]
.

= S2det(IF )

(15)

We apply this result to the definition of Ṽ asym:

Ṽ asym =
1

det(ĨF )

∑n
i=1(log(xi))

2 exp(β0 + log(S) + β1 log(xi)) −
∑n

i=1 log(xi) exp(β0 + log(S) + β1 log(xi))

−
∑n

i=1 log(xi) exp(β0 + log(S) + β1 log(xi))
∑n

i=1 exp(β0 + log(S) + β1 log(xi))



=

S

∑n
i=1(log(xi))

2 exp(β0 + β1 log(xi)) −
∑n

i=1 log(xi) exp(β0 + β1 log(xi))

−
∑n

i=1 log(xi) exp(β0 + β1 log(xi))
∑n

i=1 exp(β0 + β1 log(xi))


S2

[
∂2L

∂β0βT
0

∂2L
∂β1βT

1
−
(

∂2L
∂β0∂β1

)2]

=

∑n
i=1(log(xi))

2 exp(β0 + β1 log(xi)) −
∑n

i=1 log(xi) exp(β0 + β1 log(xi))

−
∑n

i=1 log(xi) exp(β0 + β1 log(xi))
∑n

i=1 exp(β0 + β1 log(xi))


S

[
∂2L

∂β0βT
0

∂2L
∂β1βT

1
−
(

∂2L
∂β0∂β1

)2] .

(16)

12



Equations (14) and (16) immediately yield that V asym = SṼ asym.

Since the variance is scaled by S, in the case of test of a restriction on β1, the Wald

test statistic calculated from the scaled data (W̃ ) is inversely proportional to the Wald test

statistic calculated from the unscaled data:

W̃ =

( ˜̂
β1 − βrestricted

1

)2

Ṽ asym
=

(
β̂1 − βrestricted

1

)2
SV asym

=
1

S
W. (17)

This result extends to tests of multiple restrictions on the vector β (Greene, 2012):

Wmultiple restrictions = (β̂ − βrestricted)
T ĈOV

asym−1(β̂ − βrestricted), (18)

where

ĈOV
asym

=



∂2LH0

∂β2
1

∂2LH0

∂β1∂β2
· · · ∂2LH0

∂β1∂βn

∂2LH0

∂β2∂β1

∂2LH0

∂β2
2

· · · ∂2LH0

∂β2∂βn

...
...

. . .
...

∂2LH0

∂βn∂β1

∂2LH0

∂βn∂β2
· · · ∂2LH0

∂β2
n


. (19)

By Corollary 1.1 (in appendix A.1), since each element of the Hessian matrix H(β) is

scaled by S when the dependent variable yi is scaled by S:
˜̂
COV

asym

= S · ĈOV
asym

, we

have:

W̃multiple restrictions =
1

S
Wmultiple restrictions. (20)

Since the hypothesis tests involving W̃ and W compare both statistics to the same critical

value, the result of the test depends on the scale of S.
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4.2 Wald Statistics Calculated from Robust Standard Errors

An alternative approach to calculating the variance-covariance matrix is to use the residuals

from an estimation that returns Huber-White robust standard errors.14 Consider a Huber-

White bias-corrected variance estimator V H-W defined as follows:

V H-W =
[
IF (β)

]−1
XTΣX

[
IF (β)

]−1
=
[
IF (β)

]−1
XT diag(ϵ̂21, . . . , ϵ̂

2
n)X

[
IF (β)

]−1
, (21)

where Σ = XT diag(ϵ̂21, . . . , ϵ̂n
2)X is the correction matrix based on raw residuals (Maas

and Hox, 2004). The raw residuals vector, ϵ = (y1 − exp(x′
1β), . . . , yn − exp(x′

nβ))
⊤ ∈ Rn,

consists of the differences between observed values yi and their corresponding predicted

values exp(x′
iβ). Let xi ∈ Rp for i = 1, ..., n represent the explanatory variable vectors,

and let 1n be an n × 1 vector of ones. The model matrix X ∈ Rn×(p+1) is defined as the

concatenation of 1n and the matrix formed by taking each xi as a row. The diagonal matrix

diagij ∈ Rn×n has the squared residuals on its main diagonal and zeros on the off-diagonal

elements. The (p+1)×(p+1) matrix Σ accounts for the influence of the raw residuals on the

standard errors of the estimated parameters in the space Υ ⊆ Rp.15 The degrees-of-freedom

adjustment is unaffected by the variable scale:

V H-W, adjusted =
n

n− 1
V H-W, (22)

where n is the number of observations in the model. Note that since the y-variables are

scaled by S ̸= 1, and log(S) is absorbed into the constant (thereby incorporating S into

the exponential function), we have ϵ̃ = (ỹ1 − exp(x′
1β̃), . . . , ỹn − exp(x′

nβ̃))
⊤ = (S · y1 − S ·

exp(x′
1β), . . . , S · yn − S · exp(x′

nβ))
⊤ = S · ϵ.

14See Huber (1967) and White (1982).
15For the model specified in equation (2), which follows the standard PPML-gravity framework, it is easy

to show that the parameter vector β = {β1, . . . , βp}T remains invariant under both x-variable and y-variable
scaling across the entire parameter space Υ ⊆ Rp.
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Therefore, given Equations (14), (16), (21) and (22), we have:

V H-W, adjusted =
n

n− 1

{
V asymXT diag(ϵ̂21, . . . , ϵ̂

2
n)XV asym

}
=

n

n− 1

{
1

S
[I(β)]−1XT diag(S2ϵ̂21, . . . , Ŝ

2ϵ
2

n)X
1

S
[I(β)]−1

}
=

n

n− 1

{[
Ĩ(β̃)

]−1

XT diag(S2ϵ̂21, . . . , S
2ϵ̂2n)X

[
Ĩ(β̃)

]−1
}

=
n

n− 1

{
Ṽ asymXT diag(̃ϵ̂

2

1, . . . ,
˜̂ϵ2n)XṼ asym

}
= Ṽ H-W, adjusted.

(23)

That is, the robust variance estimator does not change with S ̸= 1 on dependent variables,

and neither do the Wald statistics, as can be inferred directly using equation (17).16

4.3 Empirical Application of the Wald Tests

To demonstrate empirically the results for Wald statistics we consider the same exercises as

in Table 1, testing a single restriction that sets the coefficient on the Colony variable to zero.

We estimate the models in STATA, using commands that employ each of our approaches

to calculating the variance-covariance matrix. For each command we report results for two

different scalings of bilateral trade.

In Table 2, columns 1 and 2 report results from a Wald test calculated after estimating

with the Poisson command in STATA. The Wald test following this command uses V asym

to calculate the variance-covariance matrix. As in our derivations, the χ2 statistic depends

on the scale. Since the critical value is fixed, the p-values also depend on scale. In column 1,

bilateral trade is scaled in actual U.S. dollars, the Wald test rejects the hypothesis that the

colony variable can be excluded from the regression. In column 2, trade is scaled in billions

of dollars, and the same test does not allow rejection of the null hypothesis.

Columns 3 and 4 report results from the same specifications estimated with the ppmlhdfe

16Note that the k x 1 vector xt (where t = {1, ..., n}) of fixed variables are strictly exogenous, while
[x1, x2, ..., xn]

T remains unaffected by the scaling choices.
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command that we applied in Section III. This command uses V H−W,adjusted to calculate the

test statistic. As in our derivations, the test statistic is independent of scaling. When robust

standard errors are used, the model produces the same test statistic in both cases, and fails

to reject the null hypothesis.

Table 2: Wald Tests using Asymptotic and Robust Standard Errors

Test of “Colony”
Asymptotic SE Robust SE

S = 1 S = 106 S = 1 S = 106

Shipment in USD bil. USD USD bil. USD
χ2 1.0e+05 0.10 0.03 0.03
P > χ2 0.00 0.7493 0.8674 0.8674

Results from replications of the full specification in Santos Silva and Tenreyro (2006a) with different scalings

of the trade variable and different STATA commands. The hypothesis test considered here excludes the

Colony variable from the benchmark model. Results in the Asymptotic SE column were calculated by

postestimation testing after the “Poisson” STATA command. Robust SE results were calculated by testing

after estimation with the “ppmlhdfe” STATA command.

5 Lagrange Multiplier (LM) Test

We now consider the implications of scaling for the LM test. As with the Wald statistic, the

LM statistic relies on the asymptotic variance-covariance matrix defined in (13).

Using the ‘small’ model (equation (5)), the Hessian matrix is as follows:

H =
∂2LH0(β)

∂β2
= −

n∑
i=1

 exp(β0 + β1 log(xi)) log(xi) exp(β0 + β1 log(xi))

log(xi) exp(β0 + β1 log(xi)) (log(xi))
2 exp(β0 + β1 log(xi))

 .

(24)

Substituting H into the LM test statistics:

LMβ = ∇T (β)[−H]−1∇(β). (25)
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where

∇(β) =

 −
∑n

i=1 exp[β0 + β1 log(xi)] +
∑n

i=1 yi

−
∑n

i=1 exp[β0 + β1 log(xi)] · log(xi) +
∑n

i=1 yi · log(xi)


is the gradient of the log-likelihood function with respect to β0 and β1, respectively. Building

upon the result we obtained from Equations (14) and (16), if we scale the dependent variable

by a factor of S ̸= 1:

V asym = SṼ asym, (26)

and given the parametric relationship before and after the scaling (derived from the first

order conditions): β0 = β̃0 − log(S) and β1 = β̃1, we have:

LMβ = ∇T (β)[−H ]−1∇(β)

= ∇T (β)V asym∇(β)

=
1

S
· S · ∇T (β)

1

S
V asymS · ∇(β)

=
1

S
· S · ∇T (β)Ṽ asymS · ∇(β)

=
1

S
· ∇̃T (β̃)Ṽ asym∇̃(β̃)

=
1

S
· L̃Mβ̃.

(27)

As with the other cases, hypothesis tests using the LM test are sensitive to scaling because

the test statistic is sensitive to scaling while the critical value is not.

6 Other Topics

6.1 Other Scalings of the Data

We have shown that the scale of the data on the y-variable matters for the scale of the

likelihood function and the test statistic of an LR test. Does scaling of x-variables matter

in the same way? We investigate this question using the same analytical methods.
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We take the same log-likelihood function, equation (5). Rather than scaling yi by the

arbitrary scalar S, we now apply S to xi. The new log-likelihood appears as:

L̃H0(β̃) = −
n∑
i

exp[β̃0 + β̃1 log(Sxi)] +
n∑
i

yi[β̃0 + β̃1 log(Sxi)], (28)

where variables and parameters are defined as above. Once again, we take the first order

conditions with respect to the β terms, and solve. The parameter before and after the scaling

are related as follows: β0 = β̃0+ β̃1 log(S) and β1 = β̃1. As above, scaling affects the constant

term but not the other coefficients.

Analytical methods of the same kind that we use to study scaling of the y-variable show

that three of the four tests we study are insensitive to scaling of the x-variable. Only the

Lagrange Multiplier test is sensitive to scaling of the x-variable. The Wald test using a

Huber-White variance-covariance matrix is the only test that is robust to scaling of data on

both y- and x-variables.

6.2 Extension to Structural Estimation via MPECs

A key reason to explore the viability of joint hypothesis tests in the PPML framework is

that recent developments in the structural estimation literature allow clean tests of the

CES gravity model against richer theories of trade. In these problems, theories of bilateral

trade are expressed through the constraints on the econometric objective. Viable tests of

joint parameter restrictions would allow formal evaluation of rich theories of bilateral trade

against models that are nested within those theories. For example, Yang (2021) develops a

parsimonious Armington model of trade using the Constant Difference of Elasticities (CDE)

framework proposed by Hanoch (1975). This CDE model nests the non-homothetic CES

preferences that have recently become popular in the structural transformation literature

(e.g. Comin, Lashkari and Mestieri (2021)), as well as the canonical CES gravity model

estimated by Anderson and van Wincoop (2003).
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Formal evaluation of restrictions imposed by the CDE model we leave to Yang (2021).

In this paper we only wish to understand if the lessons from the reduced form specification

can be transferred to an MPEC setting. We consider a test of a single parameter restriction

in the context of Balistreri and Hillberry (2007)’s MPEC estimation of the canonical CES

gravity model. This is lengthy, so we include it in an appendix, Appendix B. In brief, we

find that our results do transfer to this particular MPEC setting. Statistical inference in

the LR test is polluted by sensitivity to data scaling, while the Wald test based on Huber-

White standard errors is insensitive to scaling. Our analytical work evaluates only a single

parameter restriction, but we suspect that this result is general. Generalizing this insight to

multiple restrictions in other MPECs is beyond the scope of this particular paper.17

7 Conclusion

The CES gravity model is widely accepted as canon, even though the model’s assumptions

are restrictive and - in light of the theory’s prominence - under-tested. The few prominent

papers that test the theory apply t-tests to individual parameters, parameters associated

with variables that are constructed after the first stage of a two-step estimation process

involving PPML. A framework that allows joint testing of multiple parameter restrictions

would be preferable. Estimation of highly general models of gravity is possible via MPECs,

but formal testing requires an econometric procedure that supports such tests.

In this paper we investigate the conditions under which data scaling choices affect hy-

pothesis testing of parameter restrictions imposed on estimates from a PPML gravity model.

Tests of individual parameter restrictions can be evaluated with t-tests, so we focus on tests

that are capable of evaluating joint restrictions. We use both analytical exercises and em-

pirical examples to demonstrate our results.

17In most circumstances a numerical proof is likely to be sufficient. If the results of a hypothesis test can
be shown to be robust to alternative scalings of the data (as in Table 2), the problems we have identified
here would seem to be resolved. We suspect that LR tests will be polluted by scaling in other settings, while
the particular Wald test we identify as robust to scaling will prove robust to scaling in other related settings.
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Our study considers four kinds of hypothesis tests: an LR test, Wald tests with two

different methods for calculating the variance-covariance matrix, and an LM test. Of these,

we find only one test that is robust to scaling the data on the y-variable, the Wald test that

uses Huber-White corrected standard errors to construct the variance-covariance matrix.

This test is also robust to scaling of x-variables. In an appendix, we also show that the test

can be used to evaluate hypotheses in the context of an MPEC.

Our results indicate that a Wald test based on upon a variance-covariance matrix con-

structed from robustly estimated standard errors is appropriate for testing joint restrictions

on parameters estimated in a PPML specification. This finding is of particular relevance to

empirical studies of bilateral trade, because the PPML specification is commonly employed

there and because data scaling is common. The finding is likely to be especially useful for a

nascent literature that tests theoretical constraints that canonical models of bilateral trade

impose on more general theories. The result may also be useful in other applications.
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Appendix: Variable Scaling and Hypothesis Testing in

the Gravity Model

A Extension to Multivariate Settings

In this appendix we show that the results in the paper extend to a multivariate setting with

multiple restrictions. These results are structured as Corollaries to Theorem 1.

A.1 Corollary 1.1 and Proof

Corollary 1.1 Let L(β) be the twice-differentiable log-likelihood function:

L(β) =−
n∑
i

exp[β0 + β1 log(xi) + β2 log(zi) + ...+ βm log(wi)]

+
n∑
i

yi[β0 + β1 log(xi) + β2 log(zi) + ...+ βm log(wi)],

(A.1)

where β0, β1, ..., βm are parameters, and xi, zi, ..., wi are observed from the data. Consider a

scalar S ̸= 1 on yi, which yields the following log-likelihood function:

L̃(β̃) =−
n∑
i

exp[β̃0 + β̃1 log(xi) + β̃2 log(zi) + ...+ β̃m log(wi)]

+
n∑
i

(Syi)[β̃0 + β̃1 log(xi) + β̃2 log(zi) + ...+ β̃m log(wi)],

(A.2)

where B̃ ≡ {β̃0, β̃1, ..., β̃m} are the parameters given the scale, and the relationship between

the original parameters B and the scaled parameters B̃ is as follows:
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

β0 = β̃0 − log(S)

β1 = β̃1

β2 = β̃2

...

βm = β̃m,

(A.3)

then the Hessian matrix of log-likelihood function L̃(β̃), denoted by H(β̃), is related to the

original Hessian matrix H(β) by:

H̃(β̃) = S ·H(β). (A.4)

Corollary 1.1 asserts that each element of the Hessian matrix H(β) (in the PPML function)

is scaled by S when the dependent variable yi is scaled by S.

Proof. Using the chain rule, it is easy to show that the Hessian matrix of the log-likelihood

function, for this more general case, is:

H(β) =
∂2LH0(β)

∂β · ∂βT
= −

n∑
i=1

exp(β0 + β1 log(xi) + β2 log(zi) + ...+ βm log(wi)) ·Mi, (A.5)

where Mi (corresponding to each observation i in the data) is a matrix of the second-order

partial derivatives with respect to model parameters B ≡ {β0, β1, ..., βm} as follows:
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Mi =



1 log(xi) log(zi) · · · log(wi)

log(xi) (log(xi))
2 (log(xi) log(zi)) · · · (log(xi) log(wi))

log(zi) (log(zi) log(xi)) (log(zi))
2 · · · (log(zi) log(wi))

...
...

...
. . .

...

log(wi) (log(wi) log(xi)) (log(wi) log(zi)) · · · (log(wi))
2


. (A.6)

Note that the scaling factor S ̸= 1 on yi does not affect Mi, but only the first term of the

right-hand side in equation (A.5), where the relationships between the original parameters

{β0, β1, . . . , βm} and the scaled parameters {β̃0, β̃1, . . . , β̃m} are given by β0 = β̃0 − log(S)

and βj = β̃j for j = 1, 2, . . . ,m. Hence, we have

H̃(β̃) =
∂̃2LH0(β)

∂β̃ · ∂β̃T
= −

n∑
i=1

exp(β̃0 + β̃1 log(xi) + β̃2 log(zi) + ...+ β̃m log(wi)) ·Mi

= −
n∑

i=1

exp(β0 + log(S) + β1 log(xi) + β2 log(zi) + ...+ βm log(wi)) ·Mi

= −S
n∑

i=1

exp(β0 + β1 log(xi) + β2 log(zi) + ...+ βm log(wi)) ·Mi

= S ·H(β).

(A.7)

A.2 Corollary 1.2 and Proof

Corollary 1.2 Given the conditions of Corollary 1.1, and assuming the Fisher Information

Matrix IF , defined over a commutative ring with identity R, is invertible (nonsingular), we

can generalize the result in equation (23) to accommodate multiple independent variables

xi ∈ Rn, where i ≥ 2. This applies to a parameter set B = β0, β1, ..., βn
T within the

parameter space Γ ⊆ Rn.
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Corollary 1.2 asserts that the results are applicable for joint restrictions on multiple variables.

Proof. We start with the ‘large’ model introduced in equation (8):

LHa(β) = −
n∑
i

exp[β0 + β1 log(xi) + β2 log zi] +
n∑
i

yi[β0 + β1 log(xi) + β2 log zi], (A.8)

where zi ⊆ xi ∈ Rn is the additional independent variable, β2 is its corresponding model

parameter.18

Since equation (2) is twice-differentiable, the Hessian matrix is given by:

H(β) =


∂2LHa

∂β0βT
0

∂2LHa

∂β0∂β1

∂2LHa

∂β0∂β2

∂2LHa

∂β1∂β0

∂2LHa

∂β1βT
1

∂2LHa

∂β1∂β2

∂2LHa

∂β2∂β0

∂2LHa

∂β2∂β1

∂2LHa

∂β2βT
2

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 , (A.9)

where each entry is a second order partial derivative of the log-likelihood function with

respect to the parameters β0, β1, and β2. This is a symmetric matrix because the order of

differentiation does not matter.

Given invertibility, the inverse of the negative Hessian can be simplified as:

V =
(
IF
)−1

= [−H(β)]−1 =

−


a11 a12 a13

a21 a22 a23

a31 a32 a33




−1

= − 1

det(IF )


C11 C12 C13

C21 C22 C23

C31 C32 C33


T

,

(A.10)

where Cij is the cofactor of aij in the matrix H(β), det(IF ) is the determinant of the Fisher

information matrix. In this case, we apply the Rule of Sarrus for the calculation of the

determinant of variance-covariance matrix V :

18We eliminate prime notation used originally in the large model because they are unnecessary here.
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det(IF ) = a11 · C11 − a12 · C12 + a13 · C13

= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31).

(A.11)

From Corollary 1.1, it can be shown that each element aij is scaled by S ̸= 1, hence:

det(ĨF ) = ã11(ã22ã33 − ã23ã32)− ã12(ã21ã33 − ã23ã31) + ã13(ã21ã32 − ã22ã31)

= S3 · [a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)]

= S3 · det(IF ).

(A.12)

By the Cayley–Hamilton theorem shown in Cayley (1858), we have

An − tr1A
n−1 + . . .+ (−1)n−1trn−1A+ (−1)ndet(A)Inxn = 0nxn, (A.13)

where A = IF = {aij}nxn is a n x n square matrix, satisfying its characteristic polynomial;

the trace at the kth level, denoted trk, is the sum of all principal minors of A of order k.

Since A is invertible, we substitute with n = 3, and then multiply through by the inverse of

A in equation (A.13):

A2 − tr(A)A+ tr(A2)Inxn − det(A)A−1 = 0nxn. (A.14)

Then the non-robust asymptotic variance-covariance matrix V can be written as follows:

V asym =
(
IF
)−1

=
1

det(IF )

{
IF 2 − tr(IF )IF + tr(IF 2

)Inxn

}
, (A.15)

where tr(IF ) is the trace of the matrix IF .

Since each element of the variance-covariance matrix is scaled by a factor S ̸= 1, the effect

on both the squares of the matrices IF and the sum of the elements on the main diagonal
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will be a scaling by S2 (tr(ĨF ) is a linear combination of S and unscaled diagonal elements).

Given equation (A.12), we have V asym = SṼ asym. As in equation (23), the scaling factor

1/S2, which arises from the product 1/S = Ṽ asym/V asym, is canceled out by the S2 term

originating from the raw residuals diag(S2ϵ̂21, . . . , S
2ϵ̂2n). Thus, V

H-W, adjusted = Ṽ H-W, adjusted.

A.2.1 Extension to an n x n Fisher Information Matrix

Using the results in Corollary 1.1, we define ĨF (S ̸= 1) to be the n× n matrix obtained by

multiplying every element in the Fisher information matrix by S:

ĨF =



Sv11 Sv12 . . . Sv1n

Sv21 Sv22 . . . Sv2n
...

...
. . .

...

Svn1 Svn2 . . . Svnn


. (A.16)

Applying Laplace’s expansion along the first row:

det(IF ) =
n∑

j=1

(−1)1+jv1jI
F
1j, (A.17)

where IF
1j is the determinant of the (n − 1) × (n − 1) submatrix that results from deleting

the first row and jth column from IF . The determinant of the scaled submatrix is given by:
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det(ĨF ) =
n∑

j=1

(−1)1+j(ṽ1j)det(ĨF
1j)

=
n∑

j=1

(−1)1+j(Sv1j)det(ĨF
1j)

=
n∑

j=1

(−1)1+j(Sv1j)S
n−1det(IF

1j)

= Sn

n∑
j=1

(−1)1+jv1jdet(I
F
1j)

= Sndet(IF ).

(A.18)

Here we used the fact that ĨF
1j is the (n− 1)× (n− 1) matrix IF

1j with all of its entries

multiplied by S (by applying Corollary 1.1), so the determinant of ĨF
1j is S

n−1det(IF
1j).

The scaled variance-covariance can be written as:

Ṽ =



Sv11 Sv12 . . . Sv1n

Sv21 Sv22 . . . Sv2n
...

...
. . .

...

Svn1 Svn2 . . . Svnn



−1

= − 1

det(ĨF )



C̃11 C̃12 . . . C̃1n

C̃21 C̃22 . . . C̃2n

...
...

. . .
...

C̃n1 C̃n2 . . . C̃nn



T

= − adj(Ĩ)

det(ĨF )
.

(A.19)

Since each determinant of the (n − 1) × (n − 1) submatrix of IF (det(IF
ij )) is scaled

by Sn−1, thus each cofactor Cij is scaled by Sn−1: C̃ij = (−1)i+jdet(ĨF
ij) = Sn−1Cij. It

follows that the adjugate is scaled by Sn−1: adj(Ĩ) = Sn−1 · adj(I). Since the adjugate

is scaled by Sn−1 in the numerator, and the determinant is scaled by Sn; hence, we have

V asym = SṼ asym. The remainder of the proof proceeds as in equation (23).
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B Wald Test under Structural Estimation

Now consider estimating the non-linear problem with constrained optimization using an

MPEC. We will use the example demonstrated in Balistreri and Hillberry (2007), but will

apply PPML as the objective function instead. The PPML maximization function is given

by:

L(β, U, ρ, b) =−
∑

(i,j)∈S
i ̸=j

exp [log (βi) + (1− σ) log (Uj) + (1− σ) log (pi) + (1− σ) log (tij) + σ log (Yj)]

+
∑

(i,j)∈S
i ̸=j

yij · [log (βi) + (1− σ) log (Uj) + (1− σ) log (pi) + (1− σ) log (tij) + σ log (Yj)] .

(B.1)

The associated constraints appear as:

(1) :

[
n∑

i=1

βi(piτij)
1−σ

] 1
1−σ

≥ Pj ⊥ Uj ≥ 0

(2) : qi ≥
n∑

j=1

[
βi
Yj

pi

(
piτij
Pj

)1−σ
]

⊥ pi ≥ 0

(3) : UjPj ≥ Yj ⊥ Pj ≥ 0

(4) : Yi = piqi

(5) : τij = dρij · b1−δij

(6) :
∑
i

βi = Σ (normalization),

where ⊥ indicates complementary slackness, dij is the distance between i and j observed

from the data, ρ is the elasticity of trade costs with respect to distance; b is the border

coefficient equaling one plus tariff equivalent of border costs. δij ’s are the dummy variables

equaling zeros if shipments cross international border and equaling ones if the shipments are
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taken place domestically in locations {i, j} ∈ S.

Note that σ is not easily identified in this framework. As a result, the conventional

approach in the trade literature is to fix σ at a specific assumed value. Prices p are also

exogenous (either in the data or chosen for the purpose of counterfactual exercises). For

simplicity, let us assume that all constraints in the optimization problem are satisfied with

equality and are binding at the optimal solution.

Conditions (1), (3) and (5) in the system of constraints give:

Uj

[
n∑

i=1

βi(b · dij)ρ(1−σ)

] 1
1−σ

= Yj. (B.2)

Conditions (2) and (4) ensure that qi is exogenous (given the choice of normalized pi’s),

thus

qi =
n∑

j=1

[
βi
Yj

pi

(
piτij
Pj

)1−σ
]
. (B.3)

=⇒ qi =
n∑

j=1

[
βip

−σ
i (b · dij)ρ(1−σ)Y σ

j U
1−σ
j

]
. (B.4)

To make our analysis simple, we fix pi = 1 ∀i and suppress the border costs so τij = dρij.

Without loss of generality (in terms of parameter estimation), we transform the objective

function (B.1) to the following:

L(K,U, ρ) =−
∑

(i,j)∈S
i ̸=j

exp [Ki +Wj + (1− σ) log (Uj) + ρ log (∆ij)]

+
∑

(i,j)∈S
i ̸=j

yij · [Ki +Wj + (1− σ) log (Uj) + ρ log (∆ij)] ,

(B.5)

where Ki = log(βi) is unobserved by econometrician, and Wj = σ log(Yj) will be swept into

Ki if σ is exogenous, so {Ki + Wj} is also unobserved (because Ki is not observed) which

is naturally a constant matrix for {i, j} ∈ S pairs of Poisson regression in this problem.

∆ij = d1−σ
ij is observed because dij’s are physical distances. If Uj’s are also observed, then
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this is similar to a standard PPML specification without problem constraints. In this case,

one can use our mathematics above to test if the distance variable should be included in the

model.

Given U is unobserved, we can rearrange equation (B.2) as follows:

U1−σ
j

[
n∑

i=1

βi(dij)
ρ(1−σ)

]
= Y 1−σ

j . (B.6)

=⇒ U1−σ
j =

Y 1−σ
j

[
∑n

i=1 βi(dij)ρ(1−σ)]
. (B.7)

Taking the log of both sides:

=⇒ (1− σ) log(Uj) =
Y 1−σ
j

[
∑n

i=1 βi(dij)ρ(1−σ)]
. (B.8)

=⇒ (1− σ) log(Uj) = (1− σ) log(Yj)− log

[
n∑

i=1

βi(dij)
ρ(1−σ)

]
. (B.9)

Substituting Wj = σ log(Yj):

=⇒ (1− σ) log(Uj) = log(Yj)−Wj − log

[
n∑

i=1

βi(dij)
ρ(1−σ)

]
. (B.10)

Combining Equations (B.10) and (B.5) cancels out Wj, we get:

L(K,U, ρ) =−
∑

(i,j)∈S
i ̸=j

exp

{
Ωij − log

[
n∑

i=1

βi(dij)
ρ(1−σ)

]
+ ρ log (∆ij)

}

+
∑

(i,j)∈S
i ̸=j

yij ·

{
Ωij − log

[
n∑

i=1

βi(dij)
ρ(1−σ)

]
+ ρ log (∆ij)

}
.

(B.11)

The term Ωij, which is defined as {Ki + log(Yj)} or equivalently {log(βi) + log(Yj)}, is

not observed in our dataset. The variable Yij, representing each pair of i and j, is observed.
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However, the parameter βi, which is unique for every i, is not observed. Also, dij is a known

physical distance for each pair of i and j. The parameter σ takes its assumed value. The

parameter ρ is to be estimated. Again, ∆ij, which pertains to each pair of i and j, is observed

in our data. Since we have n countries, and yij are bilateral flows among them, we have

n(n−1) equations in terms of Poisson specification (because for each country, we have n−1

trade partners). Meanwhile we have n unknowns from the βi (one for each country) and 1

unknown.

So far, we have used conditions (1), (3), and (5), but not (2), (4), and (6). If we combine

(2) and (4), while using the normalization of pi’s to 1, we get:

Yi =
n∑

j=1

[
βi(dij)

ρ(1−σ)Y σ
j U

1−σ
j

]
. (B.12)

Since βi does not have an index of j, it is essentially a constant with respect to the

summation. Factoring βi out of the summation:

=⇒ βi =
Yi∑n

j=1

[
(dij)ρ(1−σ)Y σ

j U
1−σ
j

] . (B.13)

This implies that if we can estimate β’s from the Poisson regression, then equation (B.13)

merely serves as the required n equations to calculate n unknown Uj’s. Alternatively, we may

choose to substitute (B.13) into (B.5). In this case, the empirical specification will be similar

to Anderson and van Wincoop (2003)’s “inward and outward multilateral resistances” with

the following components:

=⇒ (1− σ) log(Uj) = (1− σ) log(Yj)− log

[ ∑n
i=1 Yi · dρ(1−σ)

ij∑n
j=1 Y

σ
j U

1−σ
j · dρ(1−σ)

ij

]
. (B.14)

Note that the principle of Rank-Nullity Theorem suggests that the model is just identified

using the constrained optimization approach, since we have effectively 2n + 1 equations: n

equations from (B.10), n equations from (B.13) and the one objective function (B.5). We
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have 2n+ 1 unknowns: n unknowns from βi’s, n unknowns from Uj’s and ρ. Note that the

normalization condition (6) is typically applied in this non-linear system when (1) there are

excess degrees of parameter space, and (2) other parameters will be potentially badly scaled

if we only choose one of the βi’s given high non-linearity.

B.1 Calculating the Robust Standard Errors

To handle the model constraints, one common method is to incorporate them into the opti-

mization objective using the method of Lagrange multipliers, which transforms a constrained

optimization problem into an unconstrained problem:

L(β, U, ρ, λ, µ) = −
∑

(i,j)∈S
i ̸=j

exp [Ki +Wj + (1− σ) log (Uj) + ρ log (∆ij)]

+
∑

(i,j)∈S
i ̸=j

yij · [Ki +Wj + (1− σ) log (Uj) + ρ log (∆ij)]

+ λ ·

{
(1− σ) log(Uj)− log(Yj) +Wj + log

[
n∑

i=1

βi(dij)
ρ(1−σ)

]}

+ µ ·

(
βi −

Yi∑n
j=1

[
(dij)ρ(1−σ)Y σ

j U
1−σ
j

]) .

(B.15)

We now calculate the Hessian, by differentiating with respect to the model parameters,

which are β, U , ρ, and the Lagrange multipliers λ and µ:

H =



∂2L
∂β∂βT

∂2L
∂β∂U

∂2L
∂β∂ρ

∂2L
∂β∂λ

∂2L
∂β∂µ

∂2L
∂U∂β

∂2L
∂U∂UT

∂2L
∂U∂ρ

∂2L
∂U∂λ

∂2L
∂U∂µ

∂2L
∂ρ∂β

∂2L
∂ρ∂U

∂2L
∂ρ∂ρT

∂2L
∂ρ∂λ

∂2L
∂ρ∂µ

∂2L
∂λ∂β

∂2L
∂λ∂U

∂2L
∂λ∂ρ

∂2L
∂λ2

∂2L
∂λ∂µ

∂2L
∂µ∂β

∂2L
∂µ∂U

∂2L
∂µ∂ρ

∂2L
∂µ∂λ

∂2L
∂µ2


. (B.16)

We shall derive the score functions in order to compute the Hessian matrix:
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∂L

∂β
= −

∑
(i,j)∈S
i ̸=j

β−1
i exp [Ki +Wj + (1− σ) log (Uj) + ρ log (∆ij)] +

∑
(i,j)∈S
i ̸=j

yijβ
−1
i +

λ(dij)
ρ(1−σ)∑n

i=1 βi(dij)ρ(1−σ)
+ µ

= −
∑

(i,j)∈S
i ̸=j

exp [Wj + (1− σ) log (Uj) + ρ log (∆ij)] +
∑

(i,j)∈S
i ̸=j

yijβ
−1
i +

λ(dij)
ρ(1−σ)∑n

i=1 βi(dij)ρ(1−σ)
+ µ

∂L

∂U
= −

∑
(i,j)∈S
i ̸=j

1− σ

Uj

exp [Ki +Wj + (1− σ) log (Uj) + ρ log (∆ij)]

+
∑

(i,j)∈S
i ̸=j

yij ·
1− σ

Uj

+ λ · 1− σ

Uj

+
µ · (1− σ) · Yi ·

∑n
j=1

[
(dij)

ρ(1−σ)Y σ
j U

−σ
j

]{∑n
j=1

[
(dij)ρ(1−σ)Y σ

j U
1−σ
j

]}2 ,

∂L

∂ρ
= −

∑
(i,j)∈S
i ̸=j

exp [Ki +Wj + (1− σ) log (Uj) + ρ log (∆ij)] · log(∆ij)

+
∑

(i,j)∈S
i ̸=j

log (∆ij) · yij − λ(1− σ)
n∑

i=1

βi(dij)
ρ(1−σ) log(dij)∑n

i=1 βi(dij)ρ(1−σ)

+ µ
Yi(1− σ)

∑n
j=1

[
(dij)

ρ(1−σ) log(dij)Y
σ
j U

1−σ
j

][∑n
j=1

[
(dij)ρ(1−σ)Y σ

j U
1−σ
j

]]2 ,

∂L

∂λ
= (1− σ) log(Uj)− log(Yj) +Wj + log

[
n∑

i=1

βi(dij)
ρ(1−σ)

]
,

∂L

∂µ
= βi −

Yi∑n
j=1

[
(dij)ρ(1−σ)Y σ

j U
1−σ
j

] .
Proof.

Note that in order to derive the first-order derivative with respect to U for the function

− µYi∑n
j=1[(dij)ρ(1−σ)Y σ

j U1−σ
j ]

, we first rewrite the denominator of the function to make the deriva-

tive clearer. Let us set g(Uj) =
∑n

j=1

[
(dij)

ρ(1−σ)Y σ
j U

1−σ
j

]
. Then, the function becomes

f(Uj) = − µYi

g(Uj)
. The derivative of f with respect to Uj (denoted as f ′(Uj) or df

dUj
) can be

obtained using the chain rule and the formula for the derivative of 1/g(Uj):
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f ′(Uj) = −µYi · (−1) · g′(Uj) · [g(Uj)]
−2

=
µYi

[g(Uj)]2
· d

dUj

[
n∑

j=1

[
(dij)

ρ(1−σ)Y σ
j U

1−σ
j

]]

=
µYi[∑n

j=1

[
(dij)ρ(1−σ)Y σ

j U
1−σ
j

]]2 ·
n∑

j=1

[
(1− σ)(dij)

ρ(1−σ)Y σ
j U

−σ
j

]
.

For the function: λ ·
{
(1− σ) log(Uj)− log(Yj) +Wj + log

[∑n
i=1 βi(dij)

ρ(1−σ)
]}
, the part

that depends on ρ is log
[∑n

i=1 βi(dij)
ρ(1−σ)

]
. So, we need to take the derivative of this term

with respect to ρ. Applying the chain rule, we get the derivative as follows:

d

dρ

(
λ ·

{
(1− σ) log(Uj)− log(Yj) +Wj + log

[
n∑

i=1

βi(dij)
ρ(1−σ)

]})

= λ(1− σ)
n∑

i=1

βi(dij)
ρ(1−σ) log(dij)∑n

i=1 βi(dij)ρ(1−σ)
.

(B.17)

Similarly, for the function: µ ·
(
β − Yi∑n

j=1[(dij)ρ(1−σ)Y σ
j U1−σ

j ]

)
, the part that depends on ρ

is in the denominator of the fraction, specifically,
[
(dij)

ρ(1−σ)Y σ
j U

1−σ
j

]
. Applying the chain

rule of derivatives, we get:

d

dρ

[
µ ·

(
β − Yi∑n

j=1

[
(dij)ρ(1−σ)Y σ

j U
1−σ
j

])] = µ
Yi(1− σ)

∑n
j=1

[
(dij)

ρ(1−σ) log(dij)Y
σ
j U

1−σ
j

][∑n
j=1

[
(dij)ρ(1−σ)Y σ

j U
1−σ
j

]]2 .

(B.18)

From the first-derivatives, it is straightforward to see if we multiply yij by a factor of

S ̸= 1, then K̃i = Ki or β̃i = βi, Ũj = Uj, and ρ̃ = ρ, but the Lagrange multipliers are scaled

in the structural estimation: λ̃ = S · λ, µ̃ = S · µ.19 We can see that Wj (a destination fixed

19Similar to the standard case equation (5), the parametric relationship is established through division
of S on both sides of the equation (since the right-hand side in the first-order condition is zero) to take out
the S factor on yij .
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effect) is driving the raw residual (which is the “constant” term in our canonical example).

In the case with scale S, since β’s are unaffected, the scaling effect on the residual term is

absorbed by W̃j = Wj + log(S). Note that we can also generalize Ki = log(βi) and take

derivatives with respect to Ki. However, the parametric relationship holds the same.

By inspecting the matrix H and the first-order conditions, it is easy to observe entries

that are zeros and ones, so the Hessian matrix is updated as follows:

H =



∂2L
∂β∂βT

∂2L
∂β∂U

∂2L
∂β∂ρ

∂2L
∂β∂λ

1

∂2L
∂U∂β

∂2L
∂U∂UT

∂2L
∂U∂ρ

∂2L
∂U∂λ

∂2L
∂U∂µ

∂2L
∂ρ∂β

∂2L
∂ρ∂U

∂2L
∂ρ∂ρT

∂2L
∂ρ∂λ

∂2L
∂ρ∂µ

∂2L
∂λ∂β

∂2L
∂λ∂U

∂2L
∂λ∂ρ

0 ∂2L
∂λ∂µ

1 ∂2L
∂µ∂U

∂2L
∂µ∂ρ

∂2L
∂µ∂λ

0


. (B.19)

The variance of the score is the diagonal elements of H , which is isomorphic to the case

introduced in (12) except that there are 2n + 1 model parameters. To obtain each entry in

the Hessian matrix, one can calculate the derivative of each term with respect to the model

parameters. For ∂2L/∂β∂βT , we have the following:
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∂

∂β

−
∑

(i,j)∈S
i ̸=j

β−1
i exp [log(βi) +Wj + (1− σ) log (Uj) + ρ log (∆ij)]


= −

∑
(i,j)∈S
i ̸=j

{
exp [log(βi) +Wj + (1− σ) log (Uj) + ρ log (∆ij)]

(
−β−2

i + β−1
i β−1

i

)}
= 0,

∂

∂β

 ∑
(i,j)∈S
i ̸=j

yijβ
−1
i

 =
∑

(i,j)∈S
i ̸=j

(
−yijβ

−2
i

)
,

∂

∂β

[
λ(dij)

ρ(1−σ)∑n
i=1 βi(dij)ρ(1−σ)

]
,

=
λ

[
∑n

i=1 βi(dij)ρ(1−σ)]
2

[
0− (dij)

ρ(1−σ)(dij)
ρ(1−σ)

]
=

−λ ·
[
(dij)

ρ(1−σ)
]2

[
∑n

i=1 βi(dij)ρ(1−σ)]
2 ,

∂µ

∂β
= 0.

Finally, we get:

∂2L

∂β∂βT
=
∑

(i,j)∈S
i ̸=j

(
yijβ

−2
i

)
−

λ ·
[
(dij)

ρ(1−σ)
]2

[
∑n

i=1 βi(dij)ρ(1−σ)]
2 . (B.20)

Since λ̃ = S · λ, µ̃ = S · µ, and ỹij = yij, it is easy to see that the corresponding entry

in H is scaled by S, and this result immediately holds for the diagonal entries ∂2/∂U∂UT

and ∂2/∂ρ∂ρT without proof. Recall that the correction matrix is based on the observed raw

residuals from the standard Poisson regression (Maas and Hox, 2004)20:

ΣPoisson = XT diag(ϵ̂212, . . . , ϵ̂
2
ij)X, (B.21)

20See Goldstein (2011) for the Huber-White correction matrix for the multilevel structure, which we can
apply to this gravity case.
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where ϵ̂ij = yij − exp
[
Ĉij + (1− σ) log

(
Ûj

)
+ ρ log (∆ij)

]
, where Ĉij = K̂i + Wi, Ũj is

nothing but j’s vector of model coefficients (since 1 − σ is given in the same fashion that

data is provided). Because the scaling effect is absorbed by Wi = W̃j − log(S), therefore:

˜̂ϵi = ỹij − exp

[˜̂
Cij + (1− σ) log

(
Ûj

)
+ ρ log (∆ij)

]
= S · y2ij − S · exp

[
Ĉij + (1− σ) log

(
Ûj

)
+ ρ log (∆ij)

]
= S · ϵ̂ij.

(B.22)

Invariance of the Robust V Matrix in MPEC

Since the corresponding entries in H are scaled by S ̸= 1 and [I(β)]−1 = [−H(β)]−1,

while the correction matrix is scaled by S (thus diag(ϵ̂212, . . . , ϵ̂
2
ij) by S2), we have:

V Structural =
{
V asymXT diag(ϵ̂212, . . . , ϵ̂

2
ij)XV asym

}
=

{
1

S
[I(β)]−1XT diag(S2ϵ̂212, . . . , Ŝ

2ϵ
2

ij)X
1

S
[I(β)]−1

}
=

{[
Ĩ(β̃)

]−1

XT diag(S2ϵ̂212, . . . , S
2ϵ̂2ij)X

[
Ĩ(β̃)

]−1
}

=
{
Ṽ asymXT diag(̃ϵ̂

2

12, . . . ,
˜̂ϵ2ij)XṼ asym

}
= Ṽ Structural, adjusted.

(B.23)

which passes through the MPEC procedure as in equations (17) and (20). The Wald statistic

built from robust standard errors is invariant to scaling.

C Constructing the Variance-Covariance Matrix in MPEC

Finally, we illustrate the detailed procedure used to construct the variance matrix in the

MPEC procedure.

Conceptually, the procedure for obtaining robust standard errors in structural models is

similar to that used in standard Poisson regressions, where the raw residuals are obtained

after using the Stata command ppmlhdfe or poisson depvar indvars, vce(robust) to
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estimate the model first, except that these commands will not give us the cardinal values for

U that is required in order to estimate ρ. The MPEC procedure in Balistreri and Hillberry

(2007) allows us to estimate ρ and more complex models which reduced-form regressions are

not feasible. However, if one wishes to understand whether including ρ fits the data better,

we show that the LR tests produced from the structural procedure is biased when one scale

the independent variables (or both independent and dependent variables) of the model.

Furthermore, our PPML procedure replicates Balistreri and Hillberry (2007)’s results

and obtains that ρ = 0.36 when we fix σ = 5. The raw residuals in equation (B.22) are

immediately computable when U , ρ and β are estimated from the structural model.

The transformed observable distance matrix, ∆, is defined as:

∆ =



∆11 ∆12 . . . ∆1n

∆21 ∆22 . . . ∆2n

...
...

. . .
...

∆n1 ∆n2 . . . ∆nn


, (C.1)

The matrix Cij = log(βi) +Wj is defined as:

C =



log(β1) +W1 log(β2) +W1 . . . log(βn) +W1

log(β1) +W2 log(β2) +W2 . . . log(βn) +W2

...
...

. . .
...

log(β1) +Wn log(β2) +Wn . . . log(βn) +Wn


, (C.2)

which serves as the entries for “constant” terms and can be obtained after β’s are estimated.

The vector U is then given by:

U =



U1

U2

...

Un


, (C.3)
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which is obtained after the estimation.

The model matrix X is defined as:

X =

[
C ∆ U

]
=


log(β1) +W1 . . . log(βn) +Wn ∆11 . . . ∆1n U1

...
. . .

...
...

. . .
...

...

log(β1) +Wn . . . log(βn) +Wn ∆n1 . . . ∆nn Un

 . (C.4)

The transpose of the model matrix X, denoted by XT , is:

XT =


CT

∆T

UT

 =



log(β1) +W1 . . . log(β1) +Wn

...
. . .

...

log(βn) +W1 . . . log(βn) +Wn

∆11 . . . ∆n1

...
. . .

...

∆1n . . . ∆nn

U1 . . . Un



. (C.5)

Finally, the inverse of the negative of matrix H , denoted as (−H)−1, is given by:

(−H)−1 =



− ∂2L
∂β∂βT − ∂2L

∂β∂U
− ∂2L

∂β∂ρ
− ∂2L

∂β∂λ
− ∂2L

∂β∂µ

− ∂2L
∂U∂β

− ∂2L
∂U∂UT − ∂2L

∂U∂ρ
− ∂2L

∂U∂λ
− ∂2L

∂U∂µ

− ∂2L
∂ρ∂β

− ∂2L
∂ρ∂U

− ∂2L
∂ρ∂ρT

− ∂2L
∂ρ∂λ

− ∂2L
∂ρ∂µ

− ∂2L
∂λ∂β

− ∂2L
∂λ∂U

− ∂2L
∂λ∂ρ

−∂2L
∂λ2 − ∂2L

∂λ∂µ

− ∂2L
∂µ∂β

− ∂2L
∂µ∂U

− ∂2L
∂µ∂ρ

− ∂2L
∂µ∂λ

−∂2L
∂µ2



−1

. (C.6)

This completes the structural procedure with scaling choices in the MPEC setting.
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